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A number of authors have critically examined semiempirical mixing
length theories [1]. A defect of these theories is connected with the
fact that the magnitude of the mixing length, which is assumed to
be small in constructing the theory, turns out in experiments to be
comparable with the characteristic dimensions of the flow region.
Thus, the concept of "volume convection” [2—4] or "integral dif-
fusion™ [5], which is understood to be a transfer mechanism in which
the friction stress is not expressed in terms of the velocity gradient,
is introduced along with the concept of "gradient diffusion.” In ad-
dition, there are a number of experimental papers [6] in which it

is shown that the turbulent friction stress cannot be equal to zero at
the place in the flow where the derivative of the velocity is equal
to zero. "Mixing length” theory does not describe this effect.

It is possible to generalize mixing length theory [7~92] in a way
which eliminates these defects. Flow of an incompressible fluid is
considered.

1. Model of turbulent transfer. The following flow
scheme is adopted. As a result of instability, eddies
are generated which have dimensions on the order of
the characteristic dimension of the flow in this flow
region. As the generated eddy, or "mole" is dis-
placed in the flow, it is "stripped” by the environ-
ment, with the result that there is an exchange of
momentum and heat. This picture of eddies (moles)
appearing in layers with a large velocity gradient and
penetrating the flow is widespread.

We shall assume that the generation of a mole is
characterized by the local Reynolds number intro-
duced by L. G. Loitsyanskii {10], which is made up
of the characteristic rate of generation of pulsating
motion C*', the characteristic dimension I', identi-
fied later with the "mixing length” or with the "free
path" of the mole, and the viscosity of the fluid »

Ry =17C," [~

If this number is greater than some quantity R[)F,
then moles will be generated in the flow.

The reasoning in regard to the existence of a critical value R_g
in connection with the dimensions of the "laminar” sublayer is given
in [10-12]. The layer of the flow in which "moles" are generated
is characterized by large values of the velocity gradient. In this
layer, the free path [' may be quite small; then such a layer can
be called "equilibrium,™ and the Prandtl theory of mixing length
will be valid. Moles will fly out of this layer so that their inter-
action with the medium creates transfer of momentum and heat.
Their propagation is characterized by a certain probability of inter-
action between two points and the friction stress or the heat flux
density is characterized in the general case by integrals over the
entire volume from the sources of "moles,” with the corresponding
probabilities taken into consideration.

Let us consider a unit area about some point in
the flow M, oriented perpendicular to the y-axis and
moving at the speed of averaged motion at this point
[7] (later we shall make use of the modified scheme
of N. 1, Buleev for constructing the turbulent stress

tensor). The mole which has left the neighborhood of
point M, creates the following pulsations in passing
through this area:

W Ry cos (s, 2) + u (M) — u (M),

vV =0y cos (s, y) + v (M) — v (M,y). (1.1)

It is assumed that the moles fly out evenly in all
directions from the point M.

The passing mole contributes to the friction stress
(per unit mass)

d(u'v'y = [C,'cos(s,z) + w(M) —

— w(M)1ICy cos(s,y) + v(M) —
J\:I
- v(Mo)]exp(—mS %)%, (1.2)
i,
where the factor in the form of an exponent charac-
terizes the probability that the mole will move from
one point M to point Mg, or the value of the part of
the mole which reaches the point, or the value of the
interaction of the mole with the environment.
The total value of the friction force is obtained
from summing the contributions made by all "moles"

pu'v’y = ZPES S d(u'v)dQ, (1.3)
Mo
the other components of the tensor are written in a
like manner.
When I' — 0, we can pass to the limit, expanding
the quantities u(M) and v(M) in Taylor series. We

obtain

b GV (o0 | du
Wo'y =——3 <E+’a?>’
s Gy Cl du

<uu>‘— 3 "“zra 3—1: ete.

that is, we arrive at the usual form of the connection
between the additional stresses and the strain rate
tensor coinciding with the assumption of isotropicity
of the quantity 1' [13].

The model considered here (1.3) is also called in-
tegral diffusion. This model includes anisotropy of
transfer in different directions, as the probability of
interaction depends on the "optical thickness"

ds

T

(=1 Iy

which is different along rays going in different direc-
tions.

The value of the friction stress is not directly con-
nected with the velocity gradient. If the velocity pro-
file is not symmetric, the frictional stress is not
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necessarily equal to zero at that point in the flow
where the derivative of the velocity is zero.
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Fig. 1. Distribution of e*/r{ across the
channel.

In the plane case, the expressions for the friction
stress and heat flux density are of the form

S R ATOFIICR N A S

I
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where the turbulent Prandtl number P, is introduced.
The expression (1.4) can be simplified if we aver-
age over the angle cos 6 = 2/3,

S PR

—p ‘g"[u E) —u(y)] ——exp( iz-)%é etc. >(1.5)
Yy

In many cases, we may not be interested in effects
produced by flow asymmetry, and can simplify the
obtained expressions, expanding the differences Au
and AT into series [7]

d ‘PO dT
Txyz—PEd—;f Q=" T ay ! (1.6)
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£ = 5 exp(—-l - )T' (1.7)
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2. Values of the "mixing length" and rate of gen-
eration. There are "moles" of various sizes at every
point in the flow. In principle, the problem can be
complicated by introducing distribution according to
scales. However, we shall restrict ourselves to con-
sidering the most characteristic dimension as being
somehow connected with the properties of the distri-
bution of the velocity field or with the characteristic
dimension of the "generating" layer in the free jet
and with the distance to the wall bounding the flow,
which regulates the size of the moles in the flow,

We shall take the relationship proposed by A. M.
Obukhov [14] as the scale . Tt is assumed that the
scale distribution is determined only by the geomet-
rical properties of the channel and that the hypothesis

of local similarity is utilized. At this point, we in-
troduce the interior flow geometry, an element of
which do = 1”!ds coincides with the quantity I~ 'ds
characterizing the probability of interaction intro-
duced in the model under consideration. The author
also pointed out the flow anisotropy appearing in this
connection,

The scale distribution is determined with accuracy
to a constant in the following cases:

{=ky for the half-plane,

I _ 2k 2k o (nz> for a plane slit with the
2h ) width 2,

R E[i_—(l_)ﬂ for a circular pipe of
To 2 ) ) radius ry. (2.1)

Here r and z are the distances from the axis and
the middle plane. These distributions agree quite well
with the generally used expressions for the "mixing
length."

On comparing the expression for Txy in the gen-
erating layer when I — 0 with the expression in ac-
cordance with Prandtl's mixing length theory, we find
that the quantity C, is proportional to the friction
velocity V,. We shall accept as a hypothesis that the
following relationship is valid for C:

«=CoVlwl/p

Here 7T is the Reynolds frictional stress. This
expression can be extended to the three-dimensional
case.

Bearing in mind that "mixing length" theory de-
scribes turbulent transfer in the generating layer
sufficiently well, one may expect this assumption to
vield satisfactory results in the integral diffusion
model also.

The hypotheses enumerated here on the relation~
ship for I, on the relationghip for C,» onthe ex1s-
tence of the critical local Reynolds number Ro , and
the use of the turbulent Prandtl number P, are suf-
ficient to close the system of equations.

The constants k, Cy, R(')F, and P, introduced here
should be determined from experimental data.

3. Boundary layer on a flat plate. Close to the
wall, where the mixing length is short, the value of
the frictional stress is approximately constant.

Then

(Co==const) »

xY 2 _ 2

e )dw -7,
+ _ YV +_. U
y — ) £ u"v* .

Here y is the distance from the wall (I = ky), and
the rate of generation is constant when yt> y(‘)L and
equal to zero when y* < yi.

In accordance with this, we obtain the following
expressions for &*:

£ _ g [(1_<T>1/k>.:1l___+__1__]wheny>yo 3.1)

Co
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There are data (refer, for example to [15, 16]) on
the behavior of the turbulent heat conductivity:

8'1-
Y70 a*(y*'y*  when y+-0.

Thus, a = 0.124 according to Deissler, a = 0.09
according to Spalding; it is accepted below that a =
= 0.106.

Comparing formula (3.4) for e* with this relation
and formula (3.2) for & with the relation et = 0.40 y™,
we obtain

k=025 C,=3, uyt+=20.

The value of P, was taken to be equal to 0.71.

The dependence of ¥ on y*, the velocity profile in
the boundary layer, and the data on heat transfer at
large values of the Prandtl number agree satisfacto-
rily with the data presented in [15]. The constants
determined by these data will be used in solving other
problems.

4. Flow in a flat channel and Couette flow. The
distribution of the mixing length is given by formula
(2.1). For flow in a flat channel

Y = ¥
T, [ :

Making use of this expression and formulas (3.1)
and (3.3) for ¥, we find the distribution of € across
the channel (Fig. 1, curve 1 (0t = 250)) and the veloc~
ity distribution which agrees well with the distribu~
tion u” = 5.1 + 2.5 In y*,
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Fig. 2. Velocity distribution: 1) Karman
(1937)—with accuracy to the constant Cf =
= 0.0042; 2) Pai (1952); 3) Munk (1955); 4)
Reichardt (1955); 5) Robertson (1957); 6)
Wu (1958); 7) Wu-Robertson (1958); 8) ex-
perimental data of [17]; 9) curve from cal-
culations by the present method.

The problems considered up to this time are also
solved by making use of the usual mixing length theory
with corresponding choice of the constants and the
given relationship ¢ ¥(Y*). Thus, in these cases, we
merely verified the fact that the integral diffusion
model produces a satisfactory solution.
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Fig. 3. The derivatives of the velocity profile
and of the resistance coefficient (solid curves—
calculations by the present method, dashed
curves—in accordance with the mixing length
theory; 0 are experimental points, data from

[17]).

Below we shall consider turbulent Couette flow
which the mixing length theory with constants chosen
for the problem of the boundary layer does not solve
satisfactorily—the constant characterizing the value
of turbulent viscosity must be almost doubled [17].

This problem was solved as an approximation to
integral diffusion. The turbulent friction stress close
to the wall is determined by the formula

=

T et

» - 1+er

|

st

the value of €t is again determined by formulas (3.1)
and (3.3); it is given in Fig. 1 (curve 2, ht = 250). In
the core of the flow, the value of et for Couette flow
is almost double the value of &' for flow in a flat chan-
nel. The difference appears in these cases in the dif-
ferent distribution of the generating rate C* in the
transverse section.

Having the distribution e*, we can obtain an ex-
pression for the slope of the velocity at the center

ht fdut
8= o (),

and the resistance coefficient

from Ry = u}Lh"', where U is the value of the flow veloc-
ity on the axis.

Figure 2 shows the velocity distribution when Ry =
= 10% and presents a comparison of the obtained de-
pendence with experimental data and different solu-
tions [17]. Figure 3 presents a comparison of the
relationships S and Cf.

It can be seen from a comparison of the solution
obtained here with experimental data that the agree-
ment of the velocity profile and the value of S is suf-
ficiently good, and the value of Cf obtained in the
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calculations was 10% less than that from the experi-
mental relationship. If we recall that the values of
the constants did not change, this agreement can be
considered satisfactory.
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